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1. Introduction. The development of comguters thirty years ago made
it practical to calculate finite difference approximations of elliptic
partial differential equations. For these calculations the solution of
a linear system AU = f, which is the finite difference representation
of the differential equation, is fundamental. Hardware characteristics
of early computers, particularly memory limitations, spurred the
development of direct iterative methods for these linear systems. In
direct iterative schemes the matrix A splits into a difference A = M-N,
and one generates a sequence {U(v)} according to MU(v) = NU(“-1)+f.
Convergence of the method is governed by the spectral radius p of H-IN:
{U(“)} converges to the solution if p < 1, and smaller p implies faster
convergence.

The first iterative methods were point methods -- in any step of
the iteration they solved for one component of the unknown solution
vector at a time. Intuition suggests that iterative algorithms that
solve for several points at once will coanverge more rapidly than point
algorithms. The Gaussian elimination algorithm is seen in this light
to converge in one step. Frankel [14], Young [34], Arms, Gates, and
Zondek [1], and Varga [32], using the algebraic structure of the limear
systems, and Parter {22], [23], by exploiting the nature of the systems
as finite difference approximations to elliptic partial differential
equations, determined the convergence rates of point and block
iterative methods. The results confirmed that iterative methods on
blocks comprising several lines of unknowns indeed converged faster
than point methods. Much of the work up to 1961 is collected in [33].

The usual finite difference approximations are accurate to second
order in the spatial mesh size h. In the middle 1960s attention turned

to higher order approximation methods -- finite element and other
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projection methods, which are still the subject of intemnsive study
({36], 17), {2], (30], {51, [10]). Because of their treatment of
boundary conditions, these methods are formally easier to obtain than
higher order finite difference approximations, and for a givem accuracy
their corresponding linear system of equations is smaller tﬁan the
finite difference system. Hence interest in direct factorization
methods for linear systems grew, and continues today; see [27], [28],
[15], and [16].

At about the same time it was seen that their regular structure
made separable finite difference elliptic systems amenable to special
fast direct factorization methods ([18], [9], [12], [31]). For a
limited class of nice elliptic problems, then, it became practical to
compensate for the second order accuracy of the usual finite difference
approximation by taking a sufficiently small h and exploiting the
regular structure of the linear system.

But not every problem is nice. Moreover, within the past few
yvears a growing desire to solve three-dimensional problems, together
with the development of novel computer architectures -- array
processors, vector machines, and multiprocessors -- has rekindled
interest in block iterative methods for elliptic systems. The effects
of special architectures are considered in [29], [17], and [19], while
an ;nalysis of the convergence rates of iterative methods for faitly
general elliptic problems already appears in [23].

But not every analysis is nice, and that of [23], partly because
of its generality, is somewhat opaque. A relatively direct discussion
of the basic ideas is given in [3] for the Poisson problem in a square.
That presentation uses the strong estimates of Nitsche and Nitsche [21]

and of Brandt [8].
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Our purpose here is to reexamine the convergence rates of
iterative block methods for elliptic différence equations. A feature
of the present analysis is that we avoid the estimates of [21) and [8].
For the Poisson problem in two or three dimensions this is of little
moment. But the Nitsche estimates have never been extended to general
regions, and must fail in dimensions greater than three. In contrast,
we will show that our new approach is easily extended to general
domains, to any number of dimensions, and to general elliptic
difference equations.

In addition, we can deal with certain kinds of singularly
perturbed elliptic difference equations. Such equations can arise when
solving paraboiic problems by discrete time methods. For instance, let
A= Z§=l 32/8xi2 be the two-dimensional Laplacian; the backward Euler

method for the parabolic operator (coalat)-A leads, at each time slice

tn’ to an elliptic operator

(1.1) ¢/t ~ 4, T:= to-tog

Let Ah be a finite difference approximation to A on a spatial mesh of
size h; we get a matrix A representing the elliptic difference

operator ch2/t-h2Ah. 1f chzlt = Eha, then A corresponds to
a2  @® -, .

We distinguish four cases. Analysis of the first, in which ¢ < 0,
is easy: p = O(h-u), and iterative methods converge very rapidly. In
the second, o = 0, and (1.2) is a singularly perturbed operator. We
have studied this operator in [26], where it arose from plane iterative

methods for the Poisson problem in the unit cube; the attack there,

r————— . .
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though related to some of the ideas of this report, seems to be
particular to the model operator (1.1) and.rectangular domains.

In this paper we restrict our attention to the third and fourth
cases, wherein 0 < o £ 2. If o = 2, then (1.2) is a regular elliptic
difference operator, to which both the earlier and our new analyses
apply. When 0 < a < 2, (1.2) is again a singularly perturbed operator;
but it too can be handled with our present methods, unlike the instance
o = 0. To justify considering this case, we point out that a = 1 for
the optimal choice of t in the Crank-Nicolson method for parabolic
problems.

We begin in section 2 with a description of the model elliptic and
parabolic probléms in the two-dimensional unit square. It is worth
remarking that our model problems need not be self-adjoint. Section 3
is devoted to proving the convergence rates of iterative schemes
satisfying certain basic assumptions.

In section 4 we describe block structures of particular interest
== k-line and kXk blocks -- and the usual iterative schemes: Jacobi,
Gauss-Seidel, and successive overrelaxation. In these schemes A splits
into a difference A = M-N. The key to our analysis is that it suffices
to consider only the block Jacobi scheme, for which N is essentially a
sum of one-dimensional weak multiplication operators N. We demonstrate
this decomposition of N in section 4, and discuss the action ;f N in
section 5. In section 6 we use the theory of section 3 and properties
of X to derive the convergence rates of the block iterative methods of
section 4.

Next we take up more general problems: other operators in section
7, and other domains in section 8. We conclude in section 9 with some

comments about the general applicability of our method of analysis.
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2. The model problems. The basic ideas are clearest in this simple

setting. We construct finite difference approximations of the partial

differential operators

Lu :

-Au + dux + euy,
(2.1)

2u :

+
cu, Lu

on the open unit square

Q := {(x,y) € R

~

:0<x, vy <1}
in the usual way. Impose on { a mesh with uniform spacing
(2.2) h :=1/(P + 1)

and let (xi,yj) := (ih,jh). Define the set of interior mesh points Qh

and the discrete boundary 3Qh by !

WA

P},

o
th :

A mesh vector U = {Ui ¢ 0si, j $P+1} is a function defined on the
’

{x,y5) 2 184, ]
(2.3)
P+1, or j = 0 or = P+1}.

]
it

{(xi,yj) :1=0o0r

entire discrete mesh ﬁh 1= Qh ] 8Qh.

The discrete Laplace operator is defined at points in Qh by

2

(v -2u, .+ U )/h

(0,5 = @iors = 2855 % Bin g
(2.4)
2
+ (ui,j_1 - ZUi'j + Ui,j+l)/h .

We suppose that c, d, and e are smooth functions on { and that

(2.5) c(x,y) 2 ¢, > 0 on Q.
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The discrete operators that arise in approximating (2.1) are then

[0 o = [-A01; o+ dy (U, o= Uy )/(2h)

(2.6)

* e, Pi,gn 7 B,/
and
(2°7) [2hU]i,j = (Ci,j/r)ul,j + [LhU]i’j’

where T > 0 is given and, for imstance, c. . := c(x.,y.).
1,] 1773
Note that, although the mesh vector U is defined on ﬁh’ the
vectors AhU, LhU, and BhU are defined only at the interior mesh points.

As usual, the forward difference operators are given by

= - <1 £ i s
Vin’j : (Ui+l,j Ui,j)/h (0£isP,15js5P),
(2.8)
v .= - §1ié¢ €3 s
Ui,j : (Ui,j+l Ui,j)/h (1sisP,0%jsP).

Given mesh vectors F and G, the model elliptic problem is to find

a mesh vector U satisfying

(2.9) LhU = F in Qh’ U=Gon th

and the model parabolic problem requires U to solve
(2.10) £hU = F in Qh; U=6 on anh.

After choosing an ordering of the mesh points (xi,yj) -~ or,
equivalently, of the components of U -- we let A be the matrix
, 2 2 Loa. .
representing h Lh or h lh‘ As indicated in (2.4), Ah’ Lh’ and Zh map

vectors with P2+4P components into vectors with P2 components. Hence A

is a matrix of order Pz; the known boundary values G are put on the

~
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right hand sides of the difference equations (2.9) and (2.10). In

either case we arrive at a linear system
(2.11) AU =F

of order PZ, where F indicates the result of ordering the components of
th and of including the G terms.

Every vector U with P2 components may be viewed as a2 mesh vector

on ﬁh that also satisfies

(2.12) U=0on anh.

Henceforth we assume every mesh vector U satisfies (2.12).

An iterative method for solving (2.11) is determined by a

splitting
(2.13) A=M-N.
Rewrite (2.11) as
MU = NU + F.
After choosing a first guess U(o), we obtain a sequence {U(v)} from
.14 ™ =D L F

" It is well known that when A is nonsingular the iterates }U(v)}

§(@

converge to the unique solution of (2.11) independently of if and

only if the spectral radius
p := max {|A] : det(AM-N) = 0}

of H-]N satisfies p < 1. So the first thing we require of a splitting




is that p < 1. Evidently the iterates {U(v)} of (2.14) converge more
rapidly for smaller p. Hence our task is ‘to determine the asymptotic
behavior of p as h »+ 0.

For future reference we note that corresponding to every A for
which det(AM-N) = 0 there is a vector V # 0 satisfying AMV ; NV. We
also record two lemmas regarding V;, V&, and Ah. Let X and Y be mesh

vectors; define an inner product and associated norm

X,¥) = I X, % 50 XY, o= (x,X)/“.

An operator B on mesh vectors is normed in the customary way by

1Bl := sup {lelh : leh = 1}.

As usual, |d|_ denotes the sup norm of d over Q.

Lemma 2.1. If U is a mesh vector satisfying (2.12), then
(VxU,VxU) + (vyu,vyu) = (-AhU,U).

Proof. Summation by parts; see [11] or [20]. O

Lemma 2.2. If U is a mesh vector satisfying (2.12), then

(19,01,161) + (19,01, 1UD) € 1o 2ea0,mY2

Proof. By the Schwarz inequality,

(IVxU|,IU|) + (IVyUI,lUl) H IUIh[IVxUlIh + IV&UIh].

But the inequality 2ab € a’+b> and Lemma 2.1 show that

2 2 2y _ oo
[IVxUlh + lVyUEh] s 2[IVxUIIh + lVyUIIh ] = 2( AhU,U). D
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3.

A general approach. To begin the amalysis of the splitting (2.13),

we make four assumptions.

Al.

A2.

A3.

A4,

p <1, so the iterative method (2.14) is convergent.

p is an eigenvalue of M-IN: there is a mesh vector U # 0 such

that pMU = NU.

There is a positive constant NO’ independent of h, such that

<
lNlh 2 Ny

There are a smooth function q and constant 9 with
q(x,y) 2 g5 > 0 on Q

and a constant D > 0, independent of h, so that whenever U and V

are mesh vectors satisfying (2.12) we have
(Nu,v) = (qU,V) +E,

where

IE] 5 BDICIT,UI+IT1, VD) + (1U1,19,VI+19,VD) + (1v],1VD)

¢

+ th[(-AhU,U) + (-AV, V).

Assumptions Al - A3 are in effect more or less common; this will

become clear in section 6. Our main new concept is A4. As might be

expected, verification of A4 and the determination of q are the

important technical steps when applying our analysis to any particular

splitting. But we shall see that these steps are not difficult.

10
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When a splitting (2.13) satisfies these assumptions, the
asymptotic behavior of p as a function of h is readily discovered. We

begin with the elliptic case.

Theorem 3.1. Let A correspond to thh. Suppose the splitting
(2.13) satisfies Al - A4. Let Ao be the smallest eigenvalue of the

problem
(3.1) Lv=Aqv in Q, v =0 on 3Q.

Then

24 ond).

(3.2) p=1- th

Proof. Let U be the eigenvector associated with p in A2, so that

pMU = NU.

Subtract pNU from both sides and use (2.13) to see that

(3.3) AU = ((1 - p)/p)NU.
By Al, )
(3.4) uee=QQ - p)/(phz)

is positive. Because A represents thh, (3.3) corresponds to

(3.5) LhU = PNU in Q U=0on th'

h’

Indeed, whenever A # 0 satisfies

(3.6) AMX = NX

for some nonzero X, then




——

NPT pmes—r= . -

b= pA) := (1 - A)/(An2)

is an eigenvalue of (3.5). Conversely, if p is an eigenvalue of (3.5)

and 1+ph2 # 0, then
= = 2
A=A :=1/Q1 + yh")

is an eigenvalue of (3.6).

For fixed h, let j be an eigenvalue of (3.5) minimal in magnitude.

The basic result of [24] shows that p = Ao as h » 0 -- that is, p =
Ao+o(1). It follows by positivity of Ao that Re(1+ﬁh2) > 0 for small

h, whence A= 1/(1+ﬁh2) is a well defined eigenvalue of (3.6). Hence
= ~ 2, _ 2
pz|A|-1/|1+phl-1-[Ao+o(1)]h.

But p given by (3.4) is an eigenvalue of (3.5) by comstruction, and so

(l-p)/(phz) 2 |pl = Ao+o(1), by the minimality of H. We deduce that
< 2y _ 2
p21/(1 + [Ao +o(1)}%) =1 - [Ao + o(1)]h".
Comparison of this and the previous inequality proves (3.2). O
Parabolic equations lead to discrete singular perturbation
eigenvalue problems, so in the general nomself-adjoint case we can

establish only an inequality analogous to (3.2). We arrive as before

at (3.3), where A represents hzlh; hence
(3.7 bE(e/T+ LU = (1 - p)/PINU.

We make a basic assumption about the ratio of the time step T to the

spatial mesh size.

12
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>0 and 0 < a < 2 such that b/t = c.h”.

Pl. There are constants ¢ 1

1

a

Now define
(3.8) w iz (1 - p)/(ph%);

we deduce from (3.7), (3.8), and PI that in the parabolic case (3.3)
corresponds to

(3.9) W+ LU= pNU inQ, U=0on 30, ,

vwhere

(3.10) c(x,y) := clc(x,y).

Theorem 3.2. Let A correspound to hzlh. Suppose Pl holds and the
splitting (2.13) satisfies Al - A4. Let
Ay = min {c(x,y)/q(x,y) : (x,y) € 8}.
Then
(3.11)  ps1-AN+o@mh),

Proof. Because p is positive, (3.11) is equivalent to (l-p)/(pha)

=g A1+o(1). Suppose this inequality is false. We may then assume

.

(3.12) 0Osps 2A1.

Let U be the eigenvector of (3.9) associated with y. Normalize IUIh to

be 1. By A4,

(3.13)  p(NU,D) = p(qU,V) + E,,

where, using Lemma 2.2,

13
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1/2

E,| S 2ubD[2(-a,U,0)] 1% + 2ph?D(-8,U,U) + phD.

Use (3.12) and the inequality 2ab £ 326-2+b262 to get

2

IE,| € 167, p2h® + B/2 + 4A,Dh%B + 2A.Dh,

where we have defined
B := hz'“(-Ahu,U). ,
Lemma 2.1 shows that B > 0. It follows from (3.9) and (3.13) that

(cU,U) + B = p(qU,U) + E, +E,,

with

1/2 2-a,,2

$ 2n2"%2%672 + pe?

IE,| € b¥7R(2(-8,U,0)]

and K := |d|w+lelm. Choose 6 so small that the coefficients of B in

the estimates of El and EZ sum to less than 1 for small h. Then
(2U,0) 5 p(qu,U) + 202"%k%87% + 164, °Dn™ + 24 Dh.
The theorem follows at once. O

When the splitting is self-adjoint -- a frequent occurrence -- we

can use the variational principle to establish equality in (3.11).
Theorem 3.3. Under the assumptions of Theorem 3.2, suppose also

that we have

S1. A and M are Hermitian and positive definite.

Then

(3.14) p=1- Alha + o(hY).
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Proof. Fix € > 0 and choose ve(x,y) € C“(ﬁ) to vanish on 90 and

to satisfy ¢

jh Evsz dx dy

(3.15) SA +eE.

2 1
fQ qv,” dx dy

Now A2 and S1 imply that p = sup {(NX,X)/(MX,X) : X # 0}. Choosing X

as the mesh vector Ve determined by point evaluation of Ve yields
(3.16)  p 2 (NV,,V)/QWV,,V,) = (WV,,V)/L(AV,,V,) + (WV,,V.)].
Observe that
R Pt 2-a
(AVE,VE) =h [(cve,ve) +h (tha’vs)]'

It follows from the smoothness of Ve that

2 - 2 2-a
h(av,,v,) h“[fQ cv,© dx dy + 0",

moreover, by A4

2
h (NVG,VS) fh qve2 dx dy + o(1).

Combining these equalities with (3.15) and (3.16) yields

p21- (A +e”+o”),

which together with (3.11) establishes the theorem. O

= 0 for the operators (2.1)

1]
n

Note that hypothesis S1 requires d

of the model problems.




4. Some block iterative methods. We take up now a description of

specific block iterative methods corresponding to (2.13). The block

structure of an iterative scheme for the linear system
AX = Y,

where A is an nXn matrix, is completely determined by a block partition
of the n-vectors. Suppose every n-vector X is decomposed into

subvectors

and each Xj is itself an nj-vector. This partition of X induces a
block partition A = [A, .] in which each A, . is an n.xn, matrix. The
1,] 1,] 1]

corresponding block Jacobi iterative scheme is

(4.1) A, .X.(v) =-3 .A. X (\"1) +Y..
1,11 s#i "i,8"s i

In terms of (2.14), M is the block diagonal matrix M = diag[Ai i]' The
’

corresponding Gauss-Seidel scheme is

) _ _ ) _ (v-1)
(4.2) Ai,ixi B 2s<i Ai,sxs 2s>i Ai,sxs + Yi’

while the successive overrelaxation (SOR) method with relaxation

parameter w is

) _ _ (v) _ (v-1)
(4.3) Ai,ixi =-ulog Ai,sxs mIs>i Ai,sxs

Py, + (1 - wa, x OD,
i i,i%i

We are interested in specific block structures that arise in a

natural geometric way. Recall that a mesh vector U is defined on the

16




rectangular set of mesh points Qh. We will decompose U into blocks of
components corresponding to lines or subsquares of mesh points.

Formally, let k be a fixed integer factor of P, so that
(4.4) P = kQ for some integer Q.

In the k-line block structure (see {22] or (23] for a detailed

description), each block of U comprises the unknowns Ui . associated
?

with the points on k consecutive horizontal (or vertical) grid lines.

Index the blocks by s; we have

(4.5) i 1SisP,15jsk}.

s = 10 k(s-1)4j ¢

The kxk block structure is described in (3], (25], and [26]. Each

block comprises the unknowns associated with a kxXk square of mesh

points. We distinguish these blocks with a double index (r,s):

(4.6) i

To write down the matrices A, M, and N of the Jacobi iterative
method for each of these block structures is straightforward but
tiresome. We shall give a unified analysis of the Jacobi method for
these structures. But for illustrative purposes we first sketch a

development of the (horizontal) k-line scheme for the elliptic problem

(2.9).

For 1 § 0 S P define the PxP matrices

Do = l-l-hdi’a/Z, 4, -1+hdi’o/2]
4.7) So = diagll+hei’0/2] (1$ispP)
T0 := diag[l-hei’o/ZI.




The notation indicates that Do is tridiagonal while S0 and T0 are

2

diagonal. For example,

0 if i - j] > 1
-1-hd, /2 if j=i-1
[D°]1 s =< 1’0/
2 4 if j=i
| -Ithd; /2 ifj =i+

With this ordering of the mesh points into horizontal lines, A is the

PZXP2 block tridiagonal matrix

(4.8) A=(-s,D, -T] (1£0s5P).

¢’ o g

Now collect the lines of unkmowns k at a time. For 1 £ s £ Q let

Hs be the kPxkP block tridiagonal matrix

M :=[-S

s k(s-1)+0’ Dk(s-1)+o’ -Tk(s-1)+o] (1£0£5k),

and define the kPXkP block matrices

R s [0 O]’ I [0 Sk(s-1)+1J_
§ T, O s 0 0

Observe that A is then the block tridiagonal matrix
A=W, N, -R] (15s5Q. ,
In the k-line Jacobi scheme, A splits into the block matrices

0, R_].

M := diag[M ], N := [W_, s

We now seek a simple quantitative description of N for both the

k-line and the kxk block partitions when k 2 2. If B and C are

18




matrices, we mean by B = C+0(h) that there is some constant K so that
| (BX,Y) - (¢X,Y)| £ Kh|(X,Y)] for every X and Y.

Because S0 and Ta are O(h) perturbations of the PxP identity matrix,
let us for the moment ignore the small terms. We define a .

one-dimensional operator N on vectors ¢ := (¢1, ¢2, .. ,¢P)t as

follows:
¢ks+1 1$s£Q1,0=0
[ﬁ¢]ks+o =
(4.9) Ors 1$s£Q1,0=1,
[ﬁ@]j- = 0 for any other subscript j.

N is a weak multiplication operator, as we shall see in the next
section. Now let Nx be that operator on mesh vectors U that acts on U
only in the x-direction, and in that direction acts as N. Define Ny in

a similar way. For instance, with 1 € i £ P we have

< - -
Ui,ks+1 1£ss8Q1,0=0
[Nyuli,ks+o =
(4.10) Y; ks 1$55Q-1,0=1,
[NU]), . := 0 for any other subscript j.
Y '1,) ,

Observe for each block structure that the Jacobi splitting (4.1)
yields the same N for both the elliptic and parabolic operators (2.6)
and (2.7). This is so because the matrix representing the operator
lh-Lh is a diagonal matrix. A straightforward computation proves the

next theorem, which summarizes the essential nature of N,

19
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Theorem 4.1. Let k 2 2. In the k-line Jacobi scheme (4.1)/(4.5),
(4.11) N = Ny + 0(b),
and for the kxk block Jacobi scheme (4.1)/(4.6) N is given by

(4.12) N = Nx + Ny + 0(h). O

5. The operator N. We now show that NU converges weakly to (2/k)U, so

that N is a weak multiplication operator. In this section U and V are
real vectors with P components. For each such vector X it is useful to
define Xo := 0. It is clear from (4.9) that N samples U twice in each

block of k points {U 0 £ 0 ¢ k-1}, where 0 £ s £ Q-1 -~ except in

ksto °

the first and last blocks. Roughly, but perhars vividly, N sees U

about 2/k of the time; precisely, from (4.9) we have

~ _ Q-l
G (v =32, @ U

ksVks+1 ¥ Uks+1Vks?)-

If U and V arise from the evaluation of smooth functions u(x) and

v(x) on the points {xi := ih : 0 £ i § P+1} , then

£U,_ and V (0 £j 5 k-1),

Ugs+j = Uks kstj = Vks+1

whence

mn

i < -
U Vise1 = UggrVise; (0 S 5 kD).

Summing this approximate equality over j and dividing by k gives

k*ly v .,

v 320 Uks+jVks+j

ksvks+l =z (1/hk)2

which looks like a Riemann sum over the interval (xks, xks+k] for

(1/hk)f u(x)v(x) dx. Consequently,

e b et e b st imm

~0
R S




(Nu,v)

n

(2/kk) f[o,l] u(x)v(x) dx 2 (2/k)(U,V).

Now we make this argument precise. Let V be the forward

difference operator, as in (2.8). Fix j for the moment. Obviously

j=1

- - p3i-l = - h3d .
Ugsts = BZom0 Wiseor Vikstl = Vks+j ~ B2g=1 Wisto /.
[
(as usual, a vacuous sum has value 0). Hence '
UV =0 Vo bRE e ) |
ks ks+1 ks+j kstj ks+0 o=1 " ksto

(5.2)

- p3i-? i1y
hzo'l ks+3vvks+0 hz0‘0 ks+3vuks+o'

Replace Uks+j and V 5 in the last two terms of (5.2), using the

identity

X = X th 5 X

ks+a ks+j ks+n’

This substitution gives

UsVks+1 = Vkstiks+j * B 0, 5(0I6; ;)
5.3 B hzg;} Uks+a'vvks+o - hig;é vks+ovuks+o
- h Zg_} o J(U)Wks+a B hzz;:]r(l) a,J(v)VUks-ra’
where for 0 S 0 S j-1 S k-1 we define i ]
6y, ;0 1= B0 VK0 6(X,8) s= EpG IWKL 121G, (0L ]

Sum (5.3) over 0 § j § k-1 and divide by k to get

(5.4) U, v, .= (1/x)zkl

ks ks+1 + (/WE,

j=0 ks+J ks+3

with
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k-l '

Pt v

k-1
IEGL € BRIZ{20 10, W o) + 3 }
(5.5) ,

+ 3b%KkG(U,s)G(V,s).

vks+j kstj

By the Schwarz inequality and the inequality 2ab £ az+b2,

6(U,9)6(v,5) § (/D IETG 1M, 15 + (10 W, D).

Estimate the last term of (5.5) in this way, and sum (5.4) over s to

deduce that

Q-1 - 5
(5.6) 3i-0 UksVissy = (1/KI(U,V) + E/2,
where

([El s 2n{(Jul,19V]) + (Ivul,v])]
(.7

+ 30%K((VU,70) + (W,WV)].

Comparison of (5.1) to (5.6) shows that we can exploit the
symmetry of this argument in U and V to prove the following theorem,

which quantitatively describes N.

Theorem 5.1. Let N be given by (4.9). For P-vectors U and V,
(5.8)  (,v) = (/R)Q,V) +E,

and E is estimated by (5.7). O

6. Rates of convergence. In this section we take up the problem of

determining the convergence rates of the iterative methods (4.1) -

(4.3) when applied to the elliptic and parabolic model problems (2.9)




and (2.10) with the k-line and kxk block structures described in
section 4. We limit our discussion to thelcase where k 2 2; although
a similar argument applies when k = 1 (and formulas (6.4) - (6.9) are
valid for k = 1), we have not in that instance described N. _We begin
by showing that the Jacobi method for these block structures satisfies
the assumptions of section 3. 'After p is determined for the Jacobi

method it is easy to find the convergence rates of the Gauss-Seidel and

SOR methods.

Lemma 6.1. Assumption Al holds for both block structures and both

problems if h is sufficiently small.

Proof. 1Im all cases, inspection of the submatrices (4.7) of A, as
given by (4.8), shows that the diagonal elements of A are positive and
the other elements are, for small h, nonpositive. Therefore N is

noonegative and A and M are M-matrices: that is,

-1

(6.1) N2o, Ml2o0, anda’! 2o,

Moreover, A is irreducible for small h. Al follows from Theorem 3.13

of [33]. O

L4

Lemma 6.2. Assumption A2 holds for both block structures and both

problems if h is sufficiently small.

Proof. This follows from (6.1) and the Perron-Frobenius theory;

see Theorem 2.1 in [33]. O




We remark that when ponnegativity of M1 or A-l fails, Al and A2
often can be established by other means. For example, Al holds when A
is positive defipite and N is nonnegative. A2 follows from supposing
tbat M is positive definite, N is symmetric, and the splitting
satisfies block property A (see [1], [33], (351, [25]), for then

. -1 . . .
eigenvalues of M "N are real and occur in signed pairs.

Lemma 6.3. Assumption A3 holds for both block structures and both

problems if h is sufficiently small.
Proof. In light of Theorems 4.1 and 5.1, No S 2+0(h) £3. 0

Lemma 6.4. Assumption A4 holds for both block structures and both

problems if h is sufficiently small. For the k-line scheme,
(6.2) q = 2/k, D = max {3k+O(h), |el_/k},
while for the kxk block scheme
(6.3) q = 4/k, D = max {6k+O(h), (ldlm+lela)/k}.
Proof. These statements essentially follow from Theorems 4.1 and

5.1. We sketch the argument for the k-line block structure (4.5).

From Theorem 4.1 and (4.10), .

.
(NU,V) = 2501 Zgmp (1% Bey eqa1/2105 Vi ks

P Q-1 , _
* 2o Zgzp (17 hey oy/200; ponVy ks

Following the steps from (5.1) to (5.6), we estimate the term

T(i,s) = {1+ bey oo t/20Y) ks¥s kst
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to get

I3 T(i,s) = (/K(U,V) + £/2 + hR/2,

with E satisfying (5.7) and
IRl £ lel [QU/K)CIUL,IV]) + E/2].

The second term in the expansion of (NU,V) is appraised in the same

way, to yield

aW,V) = (2/K)(U,V) +E,
IEL $ b(2+blel ) LCITU1, V1) (U], 19,V D)]
+ B(lel /K)(1UL, 1V]) + b23k(1+hlel /2) [ (-AU,U)+(-4V,V)].

But this implies the inequality of A4, with D given by (6.2). O

Qur next theorems follow immediately from these lemmas and

Theorems 3.1 - 3.3.

Theorem 6.5. Let p(kL) and p(kB) denote the spectral radii for
the k-line and kxk block structures, respectively, of the block Jacobi
scheme applied to the elliptic problem (2.9). Let Ao denote the

smallest eigenvalue of the problem

Lv=Av in Q, v = 0 on 29.

1- (/AR + o),

1 - (k/4)th2 + o(h®). O




Theorem 6.6. Let p(SkL) and p(SkB) denote the spectral radii for
the k-line and kxk block structures, respectively, of the block Jacobi

scheme applied to the parabolic problem (2.10), and suppose that Pl

holds. Let

Ay := min {c(x,y) : (x,y) € §}.
Then

P(SKL) £ 1 - (k/2)AR" + o(n%),
(6.5)

p(SkB) S 1 - (/&AL + o(a"),

A

and equality holds if d = e = 0, so that Sl is satisfied. O

We remark that the character "S" is to remind us of the singular

perturbation nature of the parabolic equation.
When a matrix A under a block partition satisfies block property
A, then the spectral radii Pgs of the Gauss~Seidel method (4.2) and Py

of the SOR method (4.3) are determined by the spectral radius p of the

Jacobi method ([1], [33, chapter 4], [35]):

2 2 2 2
pcs"-'p: (Pw"'w‘l) =wppw'

Moreover, Py is minimized for a specific w:

12y,

w = 2/(1 + (1 - p2) pb = w - 1.

With the block structure imposed by (4.5) or (4.6), A has block

property A. This observation proves our next result.
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Corollary 6.7. Let A represent thh. Then

peg(KL) = 1 - kAgh? + o(h?),
(6.6)
oy (kL) = 1 = 2067 0 + o),
and
- 2 2
pGS(kB) =1 - (k/2)A0h + o(h®),
6.7)
p, (kB) =1 - (2kA))M/ 20 + o(n).
Let A represent h2£h. Then
Pog(SKL) £ 1 - Mlh" + o),
(6.8)
py(SKL) S 1 - 20A) /22 4 0 (6®/2),
and
Peg(SKB) S 1 - (k/z)Alh“ + oY),
(6.9) .
pp(SkB) s 1 - (2 A2 4 ov®/?). o

7. Other operators. In this section we extend our theory to cover the

more general operators L and £ defined by

Lu :

- (aux)x - (buy)y + dux + euy + fu,
(7.1)

:= + .
Lu cut Lu

For simplicity we have excluded terms in the cross-derivative “xy'
Self~adjoint operators L with this term have been discussed in [23].
We assume for convenience that a, b, ¢, d, e, and f are smooth

functions on ﬁ, that ¢ satisfies (2.5), and that
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(7.2) a(x,y) 2 a, > 0, b(x,y) 2 bo >0, f(x,y) 20 onf.

L is uniformly elliptic by the strict positivity of a and b, and

satisfies a maximum principle by virtue of the nonnegativity of f.

As in section 2, we let U be a mesh vector on the mesh-points Qh

defined by (2.3). At points (xi,yj) of Qh we define

ey, 7 (5t 21,0 Py ey T O 5 TRy /2 ;

The discrete approximations to (7.1) are then

1= - - - - 2
0,5 1= = Loy, 3 0san,5 7 Bs 50 7 20y, 505,57 iy, 00/
2
a.3) (o 54505 5e1 = U330 7 By 53Uy 5 - Uy 50070
+ di,j(ui+1,j - Ui-l,j)/(Zh) + ei’j(ui’j+1 - Ui,j-l)/(Zh)
£, .U, .
1,] 1,] t
and
(7.4) lth]i’j 1= (ci,j/t)Ui’j + [Lhuli,j‘ ‘

It is not difficult to see that the machinery of section 3 still
works. The main theorem of [24], which relates the minimal eigenvalues
of (3.1) and (3.5), is easy to establish with L and Lh given by (7.1)
and (7.3), respectively. Consequently Theorems 3.1, 3.2, and 3.3
apply, mutatis mutandis, to splittings of the matrix A arising from
(7.3) or (7.4). !

Now we must determine q for the Jacobi scheme, using either of the

block structures (4.5) or (4.6).

For the k-line structure, a direct computation yields

z (NU,V) = 3 [b,

iks+y he; ks+1/21Y;

i,ks'i, ks+1

+Z0b; e, - 08y /21 etV ke
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where the sum is over 1 £ i S P, 0 £s £Q-1. Consider a term

T(i,s) := [b v

iks+y * P ker1/2105 1V ks

= b; kstiVi,ksVi,ks+1 ¥ D& kg4 /20U

(b

iks'i, kst

+

iksty ~ Pi ks+ilUi,ksVi,ks+1”

The factor in square brackets in the last term above is bounded by
hleybl@, because b is smooth. Proceeding as in the proof of Lemma

6.4, we establish the validity of A4 with
(7.5) q = 2b/k, D = max {3k|b|_t+0(h), ZlVyblm+lelm/k}.

Observe that the variable coefficient b has led to a variable q.

In the same way, for the kxk block scheme we obtain

(2a + 2b)/k,

(7.6)

max {3klal,3kIbIg*0(h), 217,a)#21V blg#(1d] ¢lel,)/k}.

We collect our results in the following two theorems.

Theorem 7.1. Let p(kL) and p(kB) denote the spectral radii for
the horizontal k-line and kxk block structures, respectively, of the
block Jacobi scheme applied to the elliptic problem (2.9) with Lh given
by (7.3). Let fo denote the smallest eigenvalue of the problem

Lv = ybv in Q, v = 0 on 39,

and let ro denote the smallest eigenvalue of the problem

Lv = y(atb)v in Q, v = 0 on 3Q.
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Then

p(kL) = 1 - (k/2)l.'oh2 + o(hz).

7.7

p(kB) = 1 - (k/2)Tjh° + o). D

Theorem 7.2. Let p(SkL) and p(SkB) denote the spectral radii for
the horizontal k-line and kxk block structures, respectively, of the
block Jacobi scheme applied to the parabolic problem (2.10) with 2h

given by (7.4), and suppose that P1 holds. Let

-
[}

1 = min {€(x,y)/b(x,y) : (x,y) € O},

-
"

y = min {e(x,9)/(a(x,y) + b(x,y)) : (x,y) € ).

Then

IA

P(SKL) € 1 - (k/2)Fh% + o(u%),
(7.8)
p(SkB) € 1 - (k/2)r1h“'+ o(r"),

and equality holds if d = e = 0, so that S1 is satisfied. O

The nonzero pattern of A is the same whether A arises from (2.6)
or (7.3). In the more general case, then, A retains block property A
for both the k-line and kxk block partitions. Consequently the
analogue of Corollary 6.7 is valid. We leave a statement of this

Corollary 7.3 to the reader.
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8. Other domains. Extension of our results from two to m space

dimensions is straightforward. We sketch this for the model problems

set in the m-dimensional unit cube, and then return to the

two-dimensional setting to discuss domains other than the unit square.

Treatment of general domains in higher dimensions is similar, while
more general operators on these domains can be handled as outlined ia
section 7.

Impose a uniform mesh of size h = 1/(P+1) on the unit cube
Q(m) := {x = (xl, ..,xm) € Bm : 0< x; < 1}.

Let B be a multi-index P = (Bl’ ..,ﬂm) € gm, and let y(i) be the

multi-index whose ith component is 1 and whose other compoments are 0.

By xB we mean the point x = (Blh, ..,Bmh) in gm. Hence putting

B:={pez”:15 B, P}, B:={pe Z": 0% B, $ P+1]

allows us to write

Qy (o)
oy (m)

With the m-dimensional Laplacian A(m) := Ii 82/3x12, our model

{xB : § € B},

{xp : B €B and at least one Bi = 0 or = P+1j.

operators are

Lu :

-A(m)u + E7_, d.3u/dx,,
(8.1)

2u := ¢du/3t + Lu;

we suppose that ¢ and all di are smooth and that c satisfies (2.5).
Discretization of these operators is done as in (2.6) and (2.7). Let

U= (Uﬂ) be a mesh vector. The approximation of A(m) is given by
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= 2
(8.2) [Ah(m)U]B 1= Zi (UB‘Y(i) - 2UB + UB*Y(i))/h ,

and the discrete operators corresponding to (8.1) are

(8-3) [LhU]B : [-Ah(m)ulﬂ + 21 dl,B(UB+Y(1) - Uﬁ'Y(l))/(Zh)’

(8.4) [RhU]B : (cB/'l:)Uﬁ + [LhU]B'

In m dimensions there are m obvious block partitions. Suppose for
example that m = 3. In the k-plane block structure, each block of U
comprises the unknowns UB associated with the points xB on k

consecutive planes. Indexing the blocks by s, we have

U :={u

s : B €B, k(s-1) < 83 S ks}.

P
In like fashion, for blocks of kxk lines the basic subblock is

] := {U

r,s B ° g8 € B, k(r-1) < Bz < kr, k(s-1) < 83 < ks},

and kxkxk blocks are given by

~

U st = {v

8 : B eB, k(r-1) < ﬁl g kr, k(s-1) < Bz £ ks,

k(t-1) < B3 S kt}.

Let us agree to call a basic block an s-slice of U if we partition U by
imposing restrictions of the form k(si-l) < Bi s ksi on the indices

ﬁ-_s*l, cey Bm. With this notation, it is easy to state and prove the

p~dimensional version of Theorem 4.1.

Theorem 8.1. Let k 2 2. Denote by Nj the operator acting as N in
the xj-direction. Let A represent thh or hzzh. For the block Jacobi

scheme (4.1) based on s-slice blocks,

- <@
N= 3 g Nt 0. O
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Observe that s-slice decompositions preserve block property A.
Assertions similar to Lemmas 6.1 - 6.4 are readily demonstrated; the

following lemma collects the results.

Lemma 8.2. Let k 2 2 and let A correspond to thh or hzlh.
Assumptions Al - A4 are satisfied by the block Jacobi method (4.1)

based on s-slices. Specifically, for 1 < s S m,
lNlh 3 No = 2s/k+ 0(h) s+ 1, q= 2s/k,

D = max {3sk+0(h), z‘;am_sﬂ 1d,1,/K},
(8.5)
m m
IE| s hD[Zj=1 (IVEUI,IVI) + 2j=1 (IUI,IVjVI) + (1U],1vD)]

+ B2D[ (-, (@)V,V) + (-8, (@)V,N)]. O

Now the machinery of section 3 grinds out theorems like those of
section 6. Rather than turn the crank, we choose to consider problems
with the model operators (2.1) set in more general domains Q of 52.

We begin by describing Q and Qh. Assume that Q is a bounded
domain in 32 with Lipschitz boundary 90, and that locally Q lies always
on one side of 3Q. This last condition ensures that Q) has no internal
cusps. Boundedness implies that  has "leftmost" and "bottommost"
tangents x = x, := min {x: (x,y) e}, y= Yo = min {y : (x,&) e ).

Choose b > 0 and impose on 32 a grid of lines

(8.6) X =x; :=xy 4 dh, y =y, =y, t by

the intersections (xi,yj) are called grid points. Define Qh to be the

collection of all the grid points (x,,y;) € i together with all the
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points of intersection of the grid lines (8.6) with 3Q. Then aah 1=
ﬁh N 3Q, and Qh consists of those points of éh that lie in Q. The
points of ﬁh are called mesh points.

The points of Qh are conveniently viewed as being of tvo types:
the four nearest neighbors of a regular point are themselves grid
points (xi,yj), and the other points of Qh are called irregular. We
consider finite difference approximations of the operators (2.1} that
differ from the earlier comstructions (2.6) and (2.7) only at irregular
points. Any of a number of approximations at an irregular point will
suffice for our purposes; it is only necessary that the approximation
be at least an interpolation of degree 0 (see {13, pp. 199 ff.], [6]).
Proceeding as before brings us to a linear system (2.11), to which the
block iterative methods of section 4 can be applied.

To use the theory of section 3, we need to establish the relations
(~u,v) = (qU,V) + E,
;.7 [E| s hD[(leUIHVyUI.lVl) + (lUl,leVlﬂVYVI) + (fut, [v])]
+ B2D[(-A,0) + (-AV,V)]

of A4 for mesh vectors U, V that vanish on 3Qh. It is clear from the
argument of Lemma 6.4 that (8.7) remains true if f is composed of "grid
rectangles," whose sides are grid lines (8.6). All that rema{ns is to
prove (8.7) for more general domains. But this will follow if we can
show that  is almost a union of grid rectangles. To this end, note

that ﬁ, being bounded, is contained in some rectangle

2

R := {(x,y) e R" : X0 S x S Xpe1r Yo sy s yP+l}'
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Pick an integer k 2 2 and subdivide R into closed subrectangles

Rt’s = {(x,y) : X (2-1) s$x ¢ Xt Yk(s-1) Sy s yks}.

@ is the union of rectangles Rt s that lie entirely within ﬁ, and
? .

fragments of such rectangles. Let R be the interior of the set

R := {R : R__cC @},

r,s ' r,s

and for any subset G of R let (U,V)G denote the inner product of mesh
vectors U and V over the mesh points in G. Because N is bounded, (8.7)
is an easy comsequence of the following lemma, whose proof is similar

to the proof of inequality (13) in [11].

Lemma 8.3. Let U and V be mesh vectors that vanish on th' Then
22
(8.8) I(U’V)Q - (Usv)Rl £ 2h°w [('AbU,U) + ('AhV,V)]

whenever h £ ho, for some constants w and ho that depend only on f.

Proof. Divide 3Q into a finite number of pieces for which the
angle of the tangent with either the x- or y-axis exceeds some positive
value (say 30°). For instance, let B be a piece of the boundary that
is this steep with respect to the x-axis. Let S be the horizontal
strip of Q0 that abuts B and is k grid lines high, so that S is for some
fixed s the union of rectangles Rr,s and at most two pieces composed of
fragments of such rectangles. Denote by F the piece touching B -- say
the leftmost piece. The smoothness of 3Q ensures that there are
positive constants h0 and w, depending only on 2, so that the x-width

of F is at most wh when h § ho. See Figure 1.
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Now consider a horizontal mesh line y = yj in this strip S; let
X, be the leftmost and Xy the rightmost mesh points on the line, and
let Xe be the first point in the leftmost subrectangle in S. Observe
that Ixf - xal € wh. Because U vanishes on B, at each point Xy between

x_ and x_ we have
a f

_ si-1 )
Ui,j B Zo=a (Uo+1,j Uo,j)’

.. i-1
and similarly for V. Hence Iui,jl hZO___a leUo’J.I, so

A

s V vwv_.
U, vy 51§ B2GS IV (D 19,V (D

(728

- 2,1/2, f-1 1/2
h w(20=a quo,jl ) (zo=a le O,Jl )

A
N
o]

1
bbb

2
Oo=a “vxuo,jl v

2
v . 2
0, 1/
2 2
[IVon’jl + leVO,jI 1/2.
Now sum over x; between X, and Xe to get

2. U, V. . z, |0, .V, .
I 1 1,3 1,Jl s 1 I 1,J 1;J|

22b1

2 2
< hw [|v U jl + lv;va’jl /2,

and sum this last inequality over j to see that

2 v vn2 1/2.

I(UV)Fl§hw[IVUIhs h,s

Repeat this over every fragment F and boundary piece B. Then each

subrectangle Rr s within {} is covered at most four times, so
1

) 2.2 2 2 2 127,
1(U,¥)g = (U,V)gl § 2056 (1T, U + IV UL+ 19, VEp + 1V Vi,

(8.8) follows from Lemma 2.1. O




9. How general is the method? We expect that our techniques will

permit us to analyze any block iterative scheme in which the blocks
have a regular patterm, so that NU constitutes an orderly, weighted
sampling of any mesh vector U. Evidently most finite difference
approximations on nice meshes give rise to such operators N:

For instance, on uniform meshes in g@ it will be true that
B2(L U], = I, A (xs)U,,
' T TE TBUETE

where £ runs over the set of indices Z(B) of "neighboring" mesh points

of the point xp. Each smooth enough coefficient Aﬂ(xg) will satisfy

Aﬂ(X§) = Ag(xa) + 0(h)

~

for some smooth function Ag, and will be a linear combination of the
coefficients of the differential operator L to which Lh is an
approximation. Because N is derived from the matrix A representing

thh’ we will have
9.1 [NU]B = Ig BB(XE)Ug'

If N is sufficiently regular, then there will be some regularly

distributed subset S of points of ) so that

0 xB ¢S
(9.2) BB(X£) = )
Bi(xﬁ) + 0¢h) ¢ e =(p), Xg € S.

Consider now a typical term in (NU,V). At a point xB of S,




It follows from (9.1) and (9.2) that if U and V are smooth then
NU] .V, =5, B uv.;
[NU)gVg = 2, By (xg)UgVy

hence

(9.3) (~u,v) = (qu,V),

-~

where q accounts for the terms B§ and the relative cardinalities of
=(B), S, and Qh. The approximate inequality of (9.3) indicates that N
is a weak multiplication operator. Development of an estimate of the
error in (9.3) proceeds as in section 5 and in the proof of Lemma 6.4.
In effect, our view of N as a weak multiplication operator has
already been used in [23, section 7], where a splitting somewhat
different from the usual k-line block Jacobi scheme is treated.
Rectangular meshes, which have uniform spacing hi in the xi-direction,
can also be handled, as can other boundary conditions. We see then
that this viewpoint unifies the derivation of the convergence rates of
block iterative methods for elliptic and parabolic finite difference
equations. In fact, the technique will also yield estimates of the
rates of convergence of block relaxation methods applied to the
matrices arising from finite element approximatioms. But finite
elements are powerful in part because they admit irregular partitions
of Q. For such partitions it is not apparent how to group the unknowns
so that a systematic block iterative scheme is easy to implement. We
direct the reader to [4] for an example of a successful application of

these ideas in a simple case, where the iterative method was easy to

program.
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Figure 1. The strip S of Q.

F is the union of the two leftmost fragments.
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